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ABSTRACT

The determination of the distribution of airborne toxic particles as a function

of the aerodynamic diameter provides important information as well as criteria for the

definition of hazard as applied to levels of airborne contamination. This is because the

aerodynamic particle size distribution embodies the information related to particle den-

sity, diameter, shape factor and slip correction that is critical for the characterization of

particle motion in settling and impaction and it is these motions that are responsible

for particle deposition in the respiratory tract and particle collection in aerosol sampling

devices. For a given definition of hazard based on some parameter related to the

aerodynamic size distribution, this paper develops a statistical sampling error model for

the parameter that is based on the Poisson process. Given that an appropriate sampling

program has been designed for the measurement of the size distribution-related parameter

with the aerodynamic particle size analyzer, this paper proceeds to the derivation of an

optimum detection algorithm for the detection of a signal aerosol sequence in a set of

J aerosol samples with a common background. The detection algorithm is based on the

generalized likelihood ratio test in which the received count associated with the aerosol

sample is modeled as a Poisson distributed random variable. 1 erformance analyses of

the resulting algorithm, based on the probability of detection (PD)ersus signal-to-noise

ratio for several given fixed false alarm probabilities (PFA), are pres \ted.
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RtSUMt

La determination de la distribution des particules en suspension dans I'air

en fonction de leur diambtre a~rodynamique fournit d'importantes informations ainsi que

des criteres qul permettent de d~finir les risques correspondant aux degr~s de contamina-
tion du milieu atmosph~rique. En effet, [a distribution de la taille a~rodynamique renferme

des informations sur la masse volumnique, le diam~tre, le facteur de forme et la correc-
tion de glissement des particules, qui sont essentielles pour caract~riser le mouvement

des particules au cours de leur d~p6t et de leur impact; ce mouvement est 6galement

responsable du d~p6t des particules dans les voies respiratoires et de leur pi~geage dans

les dispositifs de pr~I~vement d'a~rosols. Pour une d~finition donn~e du risque deter-
min6 A partir d'un parambtre quelconque Mi & la distribution de la taille a~rodynamique,

on 61abore dans cette communication un modbIe statistique bas6 sur la loi de Poisson,

permettant de determiner I'erreur d'dchantiIlonnage pour le parambtre. A I'aide d'un pro-
gramme de pr~Ibvement appropri6 conqu pour mesurer, avec l'analyseur de tailles

a~rodynamiques, le parambtre 1i6 & distribution de la taille, on d~duit, dans cette com-

munication, I'algorithme optimal permettant de d~tecter une sequence d'a~rosols dans

un ensemble de J 6chantillons d'a~rosols qui pr~sentent les m~mes caract~ristiques de

base. L'algorithme de detection est bas6 sur un test g~n~ralis6 du rapport des
vraisemblances, dans lequel Ia valeur revue associ~e & 1'6chantillon d'a~rosol est

moddlis~e comme une variable al~atoire qui ob~it A la loi de Poisson. On pr~sente les

r~sultats des analyses de performance de l'algorithme ainsi obtenu, bas~s sur Ia pro-

babilit6 de detection (P)en fonction du rapport signal/bruit pour plusleurs valeurs don-

n~es de probabilit~s de fausse alarme(PF)
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I. INTRODUCTION

The aerodynamic particle sizer (APS), Model 3300 (TSI Incorporated) can provide a real-

time measurement of the particle size distribution according to the aerodynamic diameter 111. This

sampling instrument determines the aerodynamic diameter of the individual aerosol particles in

the sample by measuring the transit time of the particles between two spots generated by a laser

velocimeter that employs a 2 mW polarized He-Ne laser as the light source.

The APS consists of two basic modules: (1) the sensor module and (2) the signal processing

and microcomputer module. The main parts of the sensor module are the accelerating nozzle and

the two spot laser velocimeter. This module brings the aerosol sample into an outer accelerating

orifice and focusses the individual particles through a dual beam laser formed by splitting a focussed

laser beam, on the basis of polarization, using a calcite plate. The beams are then focussed using

a cylindrical lens to produce two flat beams of rectangular cross-section just downstream of the

nozzle orifice. As the aerosol particle passes through these two beams, it triggers a pair of electrical

pulses whose temporal separation is accurately measured using a high speed digital clock. The

conversion of this information into an aerodynamic particle size is directed by the signal pro ssing

module. A multichannel accumulator (MCA) is used to record the transit times of all aerosol

particles and, at the end of the prescribed sampling period, a microcomputer reads each channel of

the MCA, translates the channel numbers to aerodynamic particle sizes, and displays the information

as a discrete spectrum or histogram consisting of 48 size intervals (i.e., bins) spanning the aerosol

diameter range from 0.5-15 jim.

Ciirrently, there is active interest in the development of signal processing algorithms for the

detection of weak aerosol target signals in a heavy clutter aerosol background using an APS as the

sensor detection system. A theoretical investigation of the performance characteristics of the APS,

when utilized in the detection mode, is undertaken in this paper. Towards this objective, a stochastic

sampling error model and a signal detection algorithm based on the application of the classical

generalized maximum likelihood ratio test, are developed for the APS. This paper is organized as

follows. In Section II, a statistical sampling error model for the APS, based on the Poisson process,

is developed and analyzed. A signal detection algorithm which applies the generalized maximum

likelihood ratio test to the Poisson process is developed in Section I1. In order to analyze the

performance of the detection algorithm, probabilities of false alarm and detection as a function of
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the aerosol target-to-clutter signal-to-noise ratio (SNR) are also presented in Section I1. Section IV

provides an application of the statistical sampling error model and the signal detection algorithm to

two explicit numerical examples involving the detection of a transient aerosol target signal with an

unknown arrival time in a background clutter aerosol environment. Finally, conclusions are listed in

Section V.

II. A STATISTICAL SAMPLING ERROR MODEL FOR THE APS

The measurement of the aerodynamic particle size distribution function (PSDF) or, for that

matter, any functional of the PSDF is necessarily subject to an intrinsic variability that is due both to

statistical sampling errors and to natural physical variations which are not readily separable from the

statistical errors. For a single sampling instrument such as the APS, the statistical sampling errors

can be reduced by the design of an appropriate sampling method. This section is concerned with

the estimation of the sampling errors associated with the operation of the APS with the objective of

specifying the required sample size and observation times that must be adopted in order to bound

such errors.

The sampling error model for the APS is based on the Poisson model which provides the

information about the statistical properties of the random point process associated with the fluc-

tuations of any size distribution-related variable as a consequence of the stochastic fluctuations of

aerosol particle numbers in a given size range in the sampling volume. It is asserted that the particle

number fluctuations in a given aerodynamic diameter range can be adequately modeled by a Poisson

random variable [2] with the probability k = 0,1,2,... particles occurring given by

Ak
Pk - exp(-A), A > 0,

where A is the Poisson parameter.

With the assumption that the Poisson distribution properly describes the random fluctu-

ations of aerosol particle numbers of a given aerodynamic diameter range in the sampling volume

V,, the variability of any size distribution-related variable can be derived as follows. For any given

function f(D) of the aerodynamic diameter D, any particular measurement of the observed value

of the function due to aerosol particles in the size interval D to D + dD in the sampled volume V,,

is given by dF = f(D)n(D) V, dD, where n(D) is a particular realization of the aerodynamic par-

ticle size distribution. Consequently, it can be concluded that the ensemble mean of the stochastic

functional F, due to the contribution of all aerosol particles within the aerodynamic diameter range

UNCLASSIFIED
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[DI, D21 in the sampling volume V,, is given byD2
(F) = j (D)(n(D)) V. dD

= j f(D)N(D) V.dD, (1)

where the ensemble average of any quantity is indicated by angled brackets, (). It is worthwhile

pointing out that the ensemble mean number of aerosol particles with diameters D to D + dD in

volume V, is given by N(D) VdD M (n(D)) V, dD. In other words, the aerosol particles sampled in

the volume V, are Poisson distributed about the ensemble mean particle size distribution, N(D).

Similarly, the variance of F can be written as

Var(F) = j, = f 2(D)Var(n(D)) V, dD.
J

Now, recall that the mean and variance of a Po* son distribution are equal. Since it has been assumed

that n(D) at any fixed value of D is a Poisson random variable, it follows that Var(n(D))

(n(D)) = N(D) so

a2 I I 2(D)N(D) V, dD. (2)

D

In light of Eqs. (1) and (2), the relative fluctuation intensity of F defined as IF aF/(F),

can be expressed as follows:
D2t/2

S (j 2 I(D) N(D) VdD)

IF -= _LF 0 (3)
(F) jf(D)N(D) V dD

Since several particulate properties are proportional to the diameter of the particles raised to an

appropriate power, it is useful to consider functions f(D) with the form f(D) = c,,D n , where c,, is

a constant shape factor whose precise form is determined only by the specific value of n. Examples

of such functions include the following: f(D) = I (i.e., n = 0 and co = 1) for which the associated

property is the expected value (ensemble average) of the total number of aerosol particles within

the size interval JDI , D2 ] in the sampled volume; f(D) = 7rD 2 (i.e., n = 2 and c2 = 7r) for which the

associated property is the equivalent surface area of the aerosol particles; and, f(D) = 7rpDl/6 (i.e.,

n = 3 and c = 7rp/6 where p is the particle density) for which the associated property is the mass

of the aerosol particles. Insertion of this specialized form for f(D) into Eq. (3) yields

D2 1/2

I F, = F D2nN(D) V, dD) (4)

) D DUN(D) V dD
UN SI D
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Since the mth moment of the particle diameter about the origin D = 0 over the size interval [D1, )2]

is defined as ~D2
ID Dm N(D) dD

fJ N(D) dD

it follows easily that the relative fluctuation intensity (cf. Eq. (4)) can be written in the following

form:

IF.= OF.- (N)-1/2 p)1/

(at 1 - /  ) ' (5)

where (N), the expected total number of particles in the size diameter range [DI, D21 in the sampled

volume %4, is given by

(N) = N(D) V, dD.

It is informative to write Eq. (5) as

I F. = Nc 1/2 (6a)
(Fn)

where Ne is an effective aerosol particle number which is defined by

N, = n(N) (6b)

and

= (Dn}2 (6c)

In light of this development, it is seen that the relative fluctuation intensity of any particle size

distribution-related variable Fn is proportional to the inverse square root of the effective total number

of aerosol particles, N,. The effective total number of particles, N,, is directly proportional to the

expected value of the total number of aerosol particles, (N), with the constant of proportionality,

K, involving the moments of the particle size distribution as per Eq. (6c).

In order to provide some concrete result,; concerning the statistical sampling error model

derived above, it is useful at this point to choose an explicit form for the aerodynamic particle size

distribution function, N(D). For this purpose, it is assumed that the aerosol particle size distribution

can be adequately approximated by a three parameter gamma size distribution represented by
N"

N(D) = F(a) 3 exp(-D/f3)Da - ,

where a> 0,,3 >0, D> 0and
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is the gamma function. Here, a is the shape parameter,/3 the scale parameter, and N* the particle

number density. It is noted that the gamma distribution provides an attractive compromise between

the widely used log-normal and exponential distributions that has been traditionally assumed for

the aerosol size distribution. Indeed, measurements of Berger, Melice and Demuth [3] to test the

applicability of the log-normal and gamma distribution on an extensive data set for suspended

particulates in Gent, Belgium have demonstrated conclusively that the gamma distribution was

superior to the log-normal distribution for modeling the suspended particulate levels. For the gamma

size distribution, N(D), the relative fluctuation intensity I., expressed in Eq. (4) reduces to the

following form:

ap, 1 [P(2n + a, 1)2/13) - P(2n + a, D/13)] 1/2

(F) /N'*V, P(n + a, D2/J3) - P(n + a, D/1I3) '

where P(a, x) is the incomplete gamma function defined as

P(,) ( x) 1 t-1 exp(-t) d.P Ta()) 0F()

Similarly, it can be readily shown that the parameter r for the gamma size distribution can be

represented by

[P(n+a,D213) - P(n+ a,Du/3)]2

- [P(a,D2 113) - P(a,DI/13)] [P(2n +a,D213) - P(2n+ a, D 1 13)] (8)

For a fixed size interval [91, 021, the parameter K is a finction only of n, the exponent, related

to the size distribution-related variable F and of a and fl, the gamma shape and scale parameters,

respectively. A plot of k = I/K = (N)/N, as a function of n for a = 1,2 and 13 = 1.0 Jim, D, = 0.5

Jtm and D2 = 15.0 Jim is shown in Figure 1. It is evident from this plot that as the exponent

n increases, thereby providing increasing weight to the aerosol particles with the larger diameters,

K (and, therefore the effective particle number, N,, as per Eq. (6b)) decreases very rapidly, thus

increasing the relative fluctuation intensity of F,,. Intuitively, this is due to the smaller number of

aerosol particles which contribute to the major fraction of F as n increases. Furthermore, note that

K = 1 when n = 0, with the result that in this case, Eq. (6a) reduces to aN/(N) = (N)- 1/2. The

latter relationship is a well-known result for the relative fluctuation intensity of the total number of

aerosol particles, N, in the sampled volume V.

By application of Fq. (7), it is possible to construct curves for the normalized relative

fluctuation intensity for various size distribution-related variables. Towards this end, we consider

the size interval [1)1, D2] = [0.5,15.0] Jin which is the operating particle size range for the APS.

UNCLASSIFIED
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With this operating constraint, curves for the normalized relative fluctuation intensity, defined as

(N* V') 1 2 IF., have been calculated as a function of the gamma size distribution shape parameter a

and are displayed in Figures 2, 3, and 4 for 3 = 1.0 jim and n = 0, 2,3, respectively. These curves

distinctly show the variation of the normalized relative fluctuation intensity of F, with the shape

of the underlying number size distribution function as embodied in the gamma shape parameter a.

To provide further illustration of the effects of the number size distribution shape on the relative

fluctuation intensity, we consider the ratio, R, defined as the ratio of IF, using the gamma size dis-

tribution to that using the exponential size distribution (to which the gamma distribution converges

as a --+ 1). In light of Eq. (7), the ratio R can be expressed as

R IF.(gamma)

IF,(exponential)

[P(2n + ae, D21/3) - P(2n + a, Di/j3)]1 /2 [P(n + 1, D2 /3) - P(n + 1, Dll/3)]

[P(2n+ 1,D2//3) - P(2n+ 1, Dr/13)]/2 [P(n + a, D2 /3) - P(n + a, D,1 I)]

Plots of the ratio R with changing a for the cases of n equal to 0, 2 and 3 are displayed in Figure 5

for 13 = 1.0 itm and in Figure 6 for /3 = 3.0 jim. These plots provide a visual indication of the

distribution shape effects on the relative fluctuation intensity of the sampled variable F,,, based

on differences between the two sampling error models. The most important point to note in these

plots is that there can be a change in the relative fluctuation intensity of the variable F that arises

simply because of a variation in the size distribution shape. For example, when a gamma size

distribution having an actual shape parameter a = 0.1 (/0 = 1.0 jim) is sampled with an APS and

the relative fluctuation intensity of the number concentration (i.e., n = 0) in the diameter range

[DI,D 2] = [0.5,15.01 pm is subsequently computed using an exponential model (i.e., a -- 1), then

the actual relative fluctuation intensity of the number concentration in this case is about 5 times the

one computed. This implies that there is an underestimation by about 5 times the actual relative

fluctuation intensity value, which can arise simply by neglecting the effects of the distribution shape.

As a final point, it should be noted that the statistical sampling error model developed in

this section can be used to compute the sampling errors for a large number of variables related to

the aerodynamic particle size distribution. In particular, the model can be applied to determine the

minimum sampling duration, t,, that would be required for operation of the APS at a given aerosol

sampling flowrate, Q,, in Prder that the sampling error of a given variable of interest (e.g., F) be

smaller than or equal to some prescribed IF.,. As a simple example, to achieve a sampling error of

one percent for the total aerosol particle number using the APS with D, = 0.5 jim and D2 = 15.0

jim for an underlying size distribution function with a = 1.5,3 = 2.5 pim, and N" = 6.0 cm -3 will
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require a minimum sampling volume of V = 1800 cm' (cf. Eq. (7)). For the APS operating at an

aerosol flowrate of Q. = 83.3 cm 3 s-1, this requires a sampling duration of t, = ,1/Q, = 22 s.

III. DETECTION ALGORITHM AND PERFORMANCE ANALYSIS

In this section, a detector based on the parameter F, whose statistical sampling errors were

analyzed in the previous section, is proposed. Towards this objective, consider the APS sampling

for duration t, at an aerosol flowrate Q, to produce count data as the set of numbers {F,(j),j =

1, 2.... , J}, viz., these numbers are the observed values of the parameter F due to aerosol particles

in the size interval [I, D21 in the sampled volume V = Qt,. These counts are random variables

and, as in the previous section, it is assumed that the count F(j) during the jth sampling period

(reception or measurement) is a Poisson random variable that assumes the values k = 0, 1, 2,... with

probability P = (Ak exp(-A))/kl (A > 0). The counts obtained during disjoint sampling periods

(i.e., exposures) are assumed to be independent random variables.

For the purposes of detection, it is assumed that the aerosol sample is the sum of a target

"signal" aerosol whose presence is to be detected and a background "clutter" aerosol whose presence

is unavoidably received from the natural aerosol component present in the atmosphere. In this case,

each count, FCj), will be a Poisson random variable with parameter A(l)(j) - S(j) + A()(j), where

\)(j) refers to the situation when the signal aerosol to be detected is actually present in the sample,

a situation that is referred to as hypothesis 111. When the signal aerosol is absent in the sample-a

situation referred to as hypothesis H0-the count data F,j) will still be a Poisson random variable,

but with parameter A(0)C"), where A(°)0 ") refers only to the background aerosol component. In the

ensuing analysis, it is assumed that {A( 0)(j)} do not depend on j, viz., the background Poisson

parameter is the same for all J aerosol samples obtained. Furthermore, it is assumed that {SO')} is

an a priori known, non-negative sequence due to the presence of the target acrosol signal.

The observed count data {Fj"),j = 1, 2,... , J} is a set of mutually independent Poisson

raIdorn variables with parameters A0)Cj) = So") + A(°) if the signal aerosol is present (hypothesis HI)

or, with parameters A()(j) = A0 ) if the signal aerosol is absent (hypothesis I1o). This forms the basis

for the conventional binary hypothesis testing paradigm in which the system receives a sequence of

aerosol sample count data FU) from J independent sampling periods that can correspond to a

Poisson process with parameter A(j) such that

Io AU) - A(),  j 1,2..., J;

H1 , A") = S(j) + A °), j = 1, 2,..., J.
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Detection of the signal aerosol can then be formulated as testing the null hypothesis Ho versus

the alternative hypothesis Hi. This objective can be achieved with the likelihood ratio test whose

purpose is to test hypothesis H1, against 11o, holding the probability that HI is accepted when 1o is

actually true, i.e., the probability of false alarm, below some fixed error level.

The detector is based on a generalized likelihood ratio test and is localized, viz., it examines

a set of count data spanning a relatively short sampling duration. While not structurally necessary,

localized detection is better suited to the nature of the signals that are assumed to be present (time-

varying and transient) than a global detection. The likelihood ratio A is the ratio of the probability

("likelihood") p({Fn&(")}IHi) of observing the count data {Fn(j),J = 1,2,...,J} under H1 to the

probability of observing the data under 11o, p({F.(")} I 1 0) so
A = p({FrC)}J111)

p({F.&)l0Io)

If A() is known, then as already noted, {F,,j)) are independent, Poisson random variables, so

the joint probability p({F.O')})IHi) (i = 0, 1) is the J-fold product of the individual probability

plFl,(j)Ili) of observing each F.O). Consequently,

.,
p({F.(j)}IH ) = [ ) exp(-A(')("))

j7=1

and so it follows

I [SU) + A()]F-() exp(-(SJ) + A(°)))/F.U)!

A j= "1
H [A(O)] 'u0) exp(_A(o))/F(j) !

j=1

Some straightforward algebraic manipulations can be performed to simplify A to the following form:

A=exp - S0")  (1 + S() F

The likelihood ratio must now be compared against some appropriate threshold in order

to determine which hypothesis to accept. Since A is used by the decision rule only in comparison

to a threshold-call it Ao--any one-to-one and monotonic transformation on A rIay be performted

on both A and A0, thereby generating a modified likelihood ratio to be compared with a modifitxl

threshold. In light of this, it is convenient to consider the log-likelihood ratio

= InA

UNCLASSIFIED
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In its present form, the log-likelihood ratio detection statistic embodied in Eq. (9) has been derived

under the implicit assumption that A() is known. Since it is unlikely that AP) will be known a

priori, we must n.jw confront the problem of estimating 0 ). Intuitively, it should be expected that

if the target aerosol signal is absent, then A0 ) can be estimated by averaging the count data F(j)

over the sample period index j. Strictly speaking, in the event that A(°) is unknown, the likelihood

ratio test requires that the parameter A(O) be obtained as the maximum likelihood estimate under the

null hypothesis H0 . In this regard, the necessary estimate is obtained by choosing A(°) to maximize

the probability of receiving the count data samples, viz., to maximize

({F ) } JH ) = .F') exp(-A( ))).

The maximum likelihood estimate is obtained by solving the equation dp({F(j) IHo)/d( °) - 0 and

this process leads to

dp({F.(j)} IHo) F()_ =

dA() - p(--IHo) A() - ,

from which it follows
1 .7

A(O) _= J F.(").

j=1

Note that this is simply the average of the count data F(3j) for the case when the signal aerosol is

absent.

Choosing the detection threshold is just as important as computing the log-likelihood ratio.

It is important to note that the choice of the threshold is intimately related to the evaluation of

the performance of the detector, and to this purpose, the detection threshold T must be chosen to

provide a given false alarm rate for the detector. This particular choice of the detection threshold

provides the maximum probability of detection for a given probability of false alarm. It is important

to note that the choice of the "correct" probability of false alarm is, of course, a question for the user

of the detector to decide and one on which physical science has no bearing. However, it should be

stressed that it is not possible to operate any detection system based on zero false alarm probability;

it can be never be absolutely guaranteed that a zero probability of false alarm will occur for any

physically realizable detector. The probability of false alarm, PFA, is defined as

P1,A = Pr{L > Tillo)

and the associated probability of detection, PD, is given by

Pb = Pr{C TlH).
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The calculation of the detection threshold T using the exact multivariate Poisson probabil-

ity distribution is a difficult problem. However, for sufficiently long sampling times t,, the count

data {F,(j)}, and even, more pronouncedly, the detection statistic Z would tend to Gaussian vari-

ates. Hence, a Gaussian approximation for Z allows T to be more easily computed. Applying the

Lindelberg condition of the central limit theorem [4] to the sum of random variables in Eq. (9), it

is straightforward to show that the log-likelihood ratio can be approximated by a Gaussian vari-

ate whose mean and variance are determined as follows. In the absence of a target aerosol signal

(hypothesis 11o), the log-likelihood ratio C has a mean and variance given by

EQZ jH0 ) 0) in n(I + "u)- su)]

and

Var(CIHo) E -n(1 + A
j=1

Similarily, in the presence of the target aerosol signal (hypothesis HI), the mean and variance of the

log-likelihood ratio assumes the form

E(ZIH 1) = E( CIHo) + SU) ln(I + SU)

and
Var(C1111) =Var(C1lH ) + SUJ) ln'(1 +

j=A

The approximate distribution of C under 11o enables the detcrnination of the threshold

of any desired probability of false alarm. The approximate distribution of £ under H1 enables the

determination of the probability of detection as a function of the signal-to-noise ratio. Consequently,

in light of these reletionships and the Gaussian approximation for the log-likelihood ratio L, it is

evident that to achieve a probability of false alarm, PFA, of a requires the solution of

PFA =.a= 2 2erf(x/V2), (10)

with the detection threshold calculated from

T =E[ZIo] + x/Var[C I o]. (11)

lere, erf(.) denotes the error function. For this choice of detection threshold, the probability of

delection can then be compu~ed from

I) erf(y/V2 ), (12)
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where yw- (T-E[ZIHi])/ var[ZcH1]. (13)

For the likelihood ratio test that has been formulated, the performance of the detection

statistic depends only on the dimensional parameter J, the Poisson paramacter A() associated with

the background aerosol samples, and the signal-to-noise ratio (SNR) which is defined as

SNR S
j=1 ()

In examining the probability of detection, there are several different parameters that can be varied.

In the following simulations, a Poisson parameter A() = 10 is used for the representation of the

aerosol background noise level. In Figures 7-8, the probability of detection (PD) is shown against

the probability of false alarm (PFA), parametrized by the SNR for J = 10. Recall that J is the

number of aerosol samples used in the computation of the log-likelihood ratio. Figures 9-10 are

analogous, but they correspond to the case for J = 25 aerosol samples used in the detection process.

As would be expected, observe that the greater J is, the better the performance of the detection

algorithm. These curves show the fact that for a fixed SNR, the detector with the most aerosol

samples has the best detectability. Figures 11 and 12 depict the probability of detection versus

the signal-to-noise ratio for several prescribed (i.e., fixed) probabilities of false alarm for J = 10

and 25, respectively. It is interesting to note that for SNRs greater than or equal to about 0.4,

the detection performance curves suggest that PA depends only on the number of aerosol samples,

J, used in the detection process and is independent of the SNR (viz., of the signal level of the

target aerosol). Consequently, in this regime of operation, the detection threshold can be calculated

without knowledge of the signal-to-noise ratio and need not be adjusted to keep a constant false

alarm rate throughout the detection procedure. In this regime, the detection algorithm exhibits

constant false alarm rate (CFAR) behavior.

In summary then, the log-likelihood ratio detection algorithm can be implemented as follows:

(1) choose a for the desired PFA using Eqs. (10) and (11); (2) compute the background Poisson

parameter A(M) using only samples obtained from the pure aerosol background; (3) compute the

log-likelihood ratio Z (cf. Eq. (9)); (4) calculate the detection threshold T from Eqs. (12) and (13);

and, (5) compare £ with T and declare the target (signal aerosol) to be present if Z > T.
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IV. SOME NUMERICAL EXAMPLES

In this section, the use of the detection procedure based on the log-likelihood ratio statistic,

is illustrated by some numerical examples. The background aerodynamic particle size distribution

function is assumed to be represented by a gamma size distribution with the shape parameter a = 1.5

and the scale parameter / = 2.5 /im. In the following examples, the total number of aerosol particles

in the aerodynamic diameter range [D, D)21 = [1.0, 15.0] im in the sampled volume Y., is used as

the count data for the construction of the log-likelihood ratio detection statistic.

Example 1: Figure 13 shows a target aerosol signal in the form of the time history of tile

number concentration at a receptor position where an APS has been deployed. In this example,

the peak amplitude of the number concentration is 40 cm--the time of passage of the quasi-

instantaneous puff over the receptor position is about 15 min. For this example, the particle number

density N* of the gamma size distribution, used to model the background particle size distribution,

was adjusted to yield a background aerosol count with an intensity A(0 ) = 10.0. A sampling time

of ts = 60 s was chosen for the APS detection system operating at the aerosol flowrate Q, = 83.3

cm 3 s--this sampling time (i.e., exposure time) was chosen to ensure a statistical sampling error

of smaller than or equal to 0.5 percent. The detection performance will be expressed in terms of

the probability of detection, PD, as a function of the number of aerosol samples, J, used in tile

detection scheme, for a fixed probability of false alarm PFA. For this example, PFA = 10-4, 10-3, and

10- 2 were chosen. It is assumed that aerosol samples used in the detection procedure were collected

immediately after the initial arrival of the transient target aerosol signal. The performance of the

detector is shown in Figure 14. Observe that the probability of detection PD ; 1.0 for J > 7 and

that the detection probability is independent of PA after this point. With the prescribed sampling

time of t, = 60 s, this implies that the APS was able to detect the target signal with certainty

approximately 7 minutes after the initial arrival of the transient.

Example 2: The experiment described in Example 1 was repeated, but this time the target

aerosol signal possesses the form depicted in Figure 15. The target signal is a broader, semi-

continuous puff with a peak amplitude of approximately 1.4 cm--the time of passage of this

transient signal over the receptor position is about 150 min. For this example, the particle number

density N" was adjusted to provide a background intensity of A(0) = 5.0. It is noted that the

background aerosol clutter level is lower than that assumed in Example 1. A sampling time t, = 20

s was chosen for the APS, operating at. the volumne flowrate of Q, = 83.3 (mn s t itt order to

yield a prescribed value for the relative fluctuation intensity or tile total number of aerosol particles
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in the sampled volume of 1 percent (viz., this means that one can expect a standard deviation

in the total number of particles of approximately I percent of the expected total number due to

Poisson distributed fluctuations of the number of particles sampled about their mean gamma size

distribution). For this example, the number of samples used for the detection procedure is J = 45

and, with a sampling time of t4 = 20 s, this implies that a detection decision is made after every

sampling duration of 15 min. Figure 16 shows that detection probability, at prescribed false alarm

probabilities of 10- 3 , 10 - 2 and 10-1, for each sampling duration of 15 mn after the initial arrival of

the target signal. In the plot, the time index along the abscissa corresponds to the number index

of each detection event of sampling duration 15 min. In this case, the detection performance is fair

since for FA = 0.01, there is a 0.87 probability of detection of the target signal (shown in Figure 15)

for the detection period that includes the peak of the target signal.

V. CONCLUSIONS

In this paper, the basic theory and algorithms for a statistical sampling error model and a

detection scheme for the aerodynamic particle size analyzer, has been developed. It has been shown

how the Poisson process can be used as the basis for a sampling error model which characterizes

the fluctuations of a particle size distribution-related variable due to stochastic fluctuations of the

number of particles sampled in each particle size interval. The model developed here allows for the

proper specification of the required sampling program for the APS in order that the sampling error

be below some fixed error level. With the prescription of an appropriate sampling program, this

paper presents an algorithm for detecting a target aerosol signal against a clutter aerosol background.

The detection algorithm is based on the generalized likelihood ratio test and can be applied to the

detection of an aerosol signal sequence in a set of J aerosol samples with a common aerosol clutter

background. It has been shown how the probability of detection of the detector can be determined

for a prescribed probability of false alarm, including the effects of the signal-to-noise ratio, the

intensity of the background aerosol clutter, and the number of aerosol samples, J, used in the

detection process. Some detection results have been presented which illustrate the wide variations

in performance which may be observed, dependent on the background clutter condition, the form of

the target aerosol signal to be detected, the choice of the detection threshold, and the signal-to-noise

ratio.

Practical application of the detection algorithm described in this paper must also consider

the issues related to the operational characteristics of the APS. One issue concerns the efficiency
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of the APS, viz., what fraction of the particles in the sampled volume are actually counted by

the instrument. Another issue is the robustness of the APS and the concomitant failure rate of

the instrument when employed in a continuous field sampling mode for monitoring and detection.

Finally, the paper has only addressed the detection performance of a single APS operating as a

centralized system-the design and performance of a distributed signal detection system based on

an array of aerodynamic particle size analyzers which incorporates the possibility of sensor failure

needs to be addressed.
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FIGURE 1

A plot of k a 1/r = (N)/N. as a function of the aerodynamic diameter exponent ni for a = 1.0, 2.0 and
=1.0 ism.
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Cirve of (N ° VO)1/2f as a function or the gamma size distribution shape parameter a for/ = 1.0 Jim andI
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FIGURE 4

Curve of (N' V.)'I 21 as a function of the gamma size distribution shape parameter a for ~3=1.0 im and

n =3.
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Ratio R as a function of the gamma shape parameter ct for n =0, 2, 3 and 13 =1.0 jsm.
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FIGURE 6

Ratio R as a function of the gamma shape parameter ce for n =0, 2, 3 and (3=3.0 jtm.
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FIG~URE 7

Probability of detection (Fb) versus probability of false alarm (PpA), shown for several signal-to-noise ratio
(SNIl) values, given J = 10.
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FIGURE 8

Probability of detection (PD) versus probability of false alarm (PFA), shown for several signal-to-noise ratio
(SNR) values, given J = 10.
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FIGURE 9

Probability of detection (Po) versus probability of ralse alarm (& A), shown for several signal-to-noise ratio

(SNR) values, given J =25.
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FIGURE 10

Probability of detection (Fij) versus probability of false alarm (F A), shown for several signal-to-noise ratio
(SNR) values, givcn J = 25.
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FIGURE 11

Probability of detection ('D) versus signal-to-noise ratio (SNR) for P^A = 10 -6, 10- 4 , 10 3, 10-2 and .1 = 1).
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FIGURE 12

Probability of detection (PD) versus signal-to-noise ratio (SNR) for Pj A =10, 10-4, 10-3, 1O-2 and J =25.
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FIGURE 13

Time history of the number concentration of the target aerosol signal used in E xample I1.
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FIGURE 14

Probability of detection (PD) for the transient aerosol signal depicted in Fig. 13 as a function of the number
of aerosol samples, J, used in the detection process.
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FIGURE 15

Time history of the number concentration of the target aerosiol signal used in Example 2.
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FIGURE 16

Probability of detection (PD) for the transient aerosol signal depicted in Fig. 15 as a function of the detection
period (indicated by the time index). Each detection period consisted of a sampling duration of 15 min.
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